By Topic

Design, deployment and functional tests of the online event filter for the ATLAS experiment at LHC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

76 Author(s)
S. Armstrong ; Brookhaven Nat. Lab., Upton, NY ; A. dos Anjos ; J. T. M. Baines ; C. P. Bee
more authors

The Event Filter (EF) selection stage is a fundamental component of the ATLAS Trigger and Data Acquisition architecture. Its primary function is the reduction of data flow and rate to values acceptable by the mass storage operations and by the subsequent offline data reconstruction and analysis steps. The computing instrument of the EF is organized as a set of independent subfarms, each connected to one output of the Event Builder (EB) switch fabric. Each subfarm comprises a number of processors analyzing several complete events in parallel. This paper describes the design of the ATLAS EF system, its deployment in the 2004 ATLAS combined test beam together with some examples of integrating selection and monitoring algorithms. Since the processing algorithms are not explicitly designed for EF but are adapted from the offline ones, special emphasis is reserved to system reliability and data security, in particular for the case of failures in the processing algorithms. Other key design elements have been system modularity and scalability. The EF shall be able to follow technology evolution and should allow for using additional processing resources possibly remotely located

Published in:

IEEE Transactions on Nuclear Science  (Volume:52 ,  Issue: 6 )