By Topic

A framework for misuse detection in ad hoc Networks-part I

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Subhadrabandhu, D. ; Dept. of Electr. & Syst. Eng., Univ. of Pennsylvania, Philadelphia, PA, USA ; Sarkar, S. ; Anjum, F.

We consider ad hoc networks with multiple, mobile intruders. We investigate the placement of the intrusion detection modules for misuse-based detection strategy. Our goal is to maximize the detection rate subject to limited availability of communication and computational resources. We mathematically formulate this problem, and show that computing the optimal solution is NP-hard. Thereafter, we propose two approximation algorithms that approximate the optimal solution within a constant factor, and prove that they attain the best possible approximation ratios. The approximation algorithms though require recomputation every time the topology changes. Thereafter, we modify these algorithms to adapt seamlessly to topological changes. We obtain analytical expressions to quantify the resource consumption versus detection rate tradeoffs for different algorithms. Using analysis and simulation, we evaluate these algorithms, and identify the appropriate algorithms for different detection rate and resource consumption tradeoffs.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:24 ,  Issue: 2 )