Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Nonlinear finite-difference time-domain method for the simulation of anisotropic, χ(2), and χ(3) optical effects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Reinke, C.M. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Jafarpour, A. ; Momeni, B. ; Soltani, M.
more authors

A two-dimensional (2-D) finite-difference time-domain (FDTD) code for the study of nonlinear optical phenomena, in which both the slowly varying and the rapidly varying components of the electromagnetic fields are considered, has been developed. The algorithm solves vectorial Maxwell's equations for all field components and uses the nonlinear constitutive relation in matrix form as the equations required to describe the nonlinear system. The stability of the code is discussed and its effectiveness is demonstrated through the simulations of self-phase modulation (SPM) and second-harmonic generation (SHG). The authors also show that the combination of nonlinear effects with PCs can result in a significant improvement in device size and integrability, using the example of a Mach-Zehnder interferometer (MZI).

Published in:

Lightwave Technology, Journal of  (Volume:24 ,  Issue: 1 )