By Topic

Fabrication and characterization of an InGaAsP/InP active waveguide optical isolator with 14.7 dB/mm TE mode nonreciprocal attenuation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. Shimizu ; Res. Center for Adv. Sci. & Technol., Univ. of Tokyo, Japan ; Y. Nakano

The authors have fabricated transverse electric (TE) mode InGaAsP/InP active waveguide optical isolators based on the nonreciprocal loss shift and demonstrated improved TE mode isolation ratio of 14.7 dB/mm with reduced insertion loss at a wavelength of 1550 nm for monolithically integrable optical isolators. The wavelength dependence of the isolation ratio and the propagation loss were also measured. An isolation ratio greater than 10 dB/mm was realized over the entire wavelength range of 1530-1560 nm. These results lead to the monolithic integration of semiconductor waveguide optical isolators with edge-emitting semiconductor lasers and highly functional photonic integrated circuits with many cascaded optical devices.

Published in:

Journal of Lightwave Technology  (Volume:24 ,  Issue: 1 )