By Topic

Inverse kinematics of binary manipulators by using the continuous-variable-based optimization method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Young Kim, Yoon ; Initiatives Center for Multiscale Design, Seoul Nat. Univ., South Korea ; Gang-Won Jang ; Sang Jun Nam

Hyper redundancy, high reliability, and high task repeatability are the main advantages of binary manipulators over conventional manipulators with continuous joints, especially when manipulators are operated under tough and complex work conditions. The precise and complex movement of a binary manipulator necessitates many modules. In this case, numerically efficient inverse kinematics algorithms for binary manipulators usually require impractically large memory size for the real-time calculation of the binary states of all joints. To overcome this limitation by developing a new inverse kinematics algorithm is the objective of this research. The key idea of the proposed method is to formulate the inverse kinematics problem of a binary manipulator as an optimization problem with real design variables, in which the real variables are forced to approach the permissible binary values corresponding to two discrete joint displacements. Using the proposed optimization method, the inverse kinematics of 3-D binary manipulators with many modules can be solved almost in real time (say, less than a second for up to 16 modules) without requiring a large memory size. Furthermore, some manipulation considerations, such as operation power minimization, can be easily incorporated into the proposed formulation. The effectiveness of the proposed method is verified through several numerical problems, including 3-D inverse kinematics problems.

Published in:

Robotics, IEEE Transactions on  (Volume:22 ,  Issue: 1 )