By Topic

Performance improvement of an electrothermal microactuator fabricated using Ni-diamond nanocomposite

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Li-Nuan Tsai ; Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Guang-Ren Shen ; Yu-Ting Cheng ; W. Hsu

In this paper, a low-temperature stress-free electrolytic nickel (EL) deposition process with added dispersed diamond nanoparticles (diameter <0.5 μm) is developed to synthesize Ni-diamond nanocomposite for fabricating electrothermal microactuators. Device characterization reveals dramatic performance improvements in the electrothermal microactuator that is made of the nanocomposite, including a reduction in the input power requirement and enhanced operation reliability. In comparison with the microactuator made of pure nickel, the nanocomposite one can save about 73% the power for a 3 μm output displacement and have a longer reversible displacement range, which is prolonged from 1.8 μm to more than 3 μm. Furthermore, the nanocomposite device exhibits no performance degradation after more than 100 testing cycles in the reversible regime. The enhancements increase with the incorporation of the nanodiamond in a nickel matrix, so the Ni-diamond nanocomposite has potential for application in MEMS fabrication.

Published in:

Journal of Microelectromechanical Systems  (Volume:15 ,  Issue: 1 )