By Topic

Robust design and model validation of nonlinear compliant micromechanisms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. W. Wittwer ; Sandia Nat. Labs., Albuquerque, NM, USA ; M. S. Baker ; L. L. Howell

Although the use of compliance or elastic flexibility in microelectromechanical systems (MEMS) helps eliminate friction, wear, and backlash, compliant MEMS are known to be sensitive to variations in material properties and feature geometry, resulting in large uncertainties in performance. This paper proposes an approach for design stage uncertainty analysis, model validation, and robust optimization of nonlinear MEMS to account for critical process uncertainties including residual stress, layer thicknesses, edge bias, and material stiffness. A fully compliant bistable micromechanism (FCBM) is used as an example, demonstrating that the approach can be used to handle complex devices involving nonlinear finite element models. The general shape of the force-displacement curve is validated by comparing the uncertainty predictions to measurements obtained from in situ force gauges. A robust design is presented, where simulations show that the estimated force variation at the point of interest may be reduced from ±47 μN to ±3 μN. The reduced sensitivity to process variations is experimentally validated by measuring the second stable position at multiple locations on a wafer.

Published in:

Journal of Microelectromechanical Systems  (Volume:15 ,  Issue: 1 )