By Topic

Optical sensors based on active microcavities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jun Yang ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA ; Guo, L.J.

We propose an active optical sensor based on a microcavity with gain. Greatly improved sensitivity can be achieved in active microcavities as compared with passive high-Q microcavities. We show that an active sensor using a gain-doped microsphere can provide 104-fold narrower resonance linewidth than does a passive microcavity in the transmission spectrum. Such highly sensitive microcavity optical sensors can be used to detect low concentrations of chemicals or biomolecules in their surroundings. Our analysis shows that this type of compact active microcavity is sensitive to an effective refractive index change of the order of 10-9.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:12 ,  Issue: 1 )