By Topic

Modeling and design of a novel high-sensitivity electric field silicon-on-insulator sensor based on a whispering-gallery-mode resonator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
V. M. N. Passaro ; Dipt. di Elettrotecnica ed Elettronica, Politecnico di Bari, Italy ; F. De Leonardis

In this paper, we present the modeling and design of a new approach to a miniaturized electric field sensor, based on a whispering-gallery-mode resonator coupled with a Fabry-Perot cavity in silicon-on-insulator technology. The sensing element consists of a metal oxide semiconductor capacitor, optimized to achieve high electrical sensitivity and low optical losses. The theoretical model of the whole sensor architecture includes the influence of all electrical and optical parameters, including thin oxide thickness, silicon and polysilicon doping concentration, optical losses due to propagation, absorption and scattering, wavelength and amplitude characteristics of the architecture, charge accumulation effects in the capacitor, and thermal effects. The very high sensitivity of this device, demonstrated by simulations, is due to the simultaneous influence of the two coupled resonators and the metal oxide semiconductor structure.

Published in:

IEEE Journal of Selected Topics in Quantum Electronics  (Volume:12 ,  Issue: 1 )