By Topic

Improving accuracy in estimation of artery-wall displacement by referring to center frequency of RF echo

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. Hasegawa ; Dept. of Electron. Eng., Tohoku Univ., Sendai, Japan ; H. Kanai

Noninvasive measurement of mechanical properties, such as elasticity, of the arterial wall, is useful for diagnosis of atherosclerosis. The elasticity of the arterial wall can be estimated by combining measurement of displacement of the arterial wall with that of blood pressure. In general, the displacement of the arterial wall is estimated from the phase shift of radio frequency (RF) echoes between two consecutive frames using a correlation estimator with quadrature demodulated complex signals. Recently, digitized data of broadband RF echoes are available in modern diagnostic equipment. The Fourier transform can be used to estimate the phase of the RF echo at each frequency within the RF frequency bandwidth. Therefore, the phase shifts between RF echoes of two consecutive frames can be estimated at multiple frequencies. In this estimation, due to object displacement, the RF echo is time shifted in comparison with that of the previous frame. However, the position of the time window for the Fourier transform is not changed between two consecutive frames. This change in relative position between the RF echo and the time window has a strong influence on the estimation of the artery-wall displacement, resulting in error. To suppress this error, the phase shift should be estimated at the actual RF center frequency. In this paper, this error suppression was investigated through simulation experiments and in vivo experiments on the human carotid artery.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:53 ,  Issue: 1 )