Cart (Loading....) | Create Account
Close category search window
 

Direct torque control of induction machines using space vector modulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Habetler, T.G. ; Sch. of Electr. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Profumo, F. ; Pastorelli, M. ; Tolbert, L.M.

A direct induction machine torque control method based on predictive, deadbeat control of the torque and flux is presented. By estimating the synchronous speed and the voltage behind the transient reactance, the change in torque and flux over the switching period is calculated. The stator voltage required to cause the torque and flux to be equal to their respective reference values is calculated. Space vector PWM is used to define the inverter switching state. An alternative approach to deadbeat control for use in the transient or pulse-dropping mode is also presented. An alternative modulation scheme is presented in which transient performance is improved by specifying the inverter switching states and then calculating the required switched instants to maintain deadbeat control of the flux while reducing the torque error during the entire switching interval. A similar approach is used for a transient in the flux. The implementation of the control scheme using DSP-based hardware is described, with complete experimental results given

Published in:

Industry Applications, IEEE Transactions on  (Volume:28 ,  Issue: 5 )

Date of Publication:

Sep/Oct 1992

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.