By Topic

Automatic segmentation of heart sound signals using hidden markov models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ricke, A.D. ; GE Healthcare, Milwaukee, WI ; Povinelli, R.J. ; Johnson, M.T.

The monitoring of respiration rates using impedance plethysmography is often confused by cardiac activity. This paper proposes using the phonocardiogram as an alternative, since the process of respiration affects heart sounds. As part of this research, a technique is developed to segment heart sounds into its component segments, using hidden Markov models. The heart sounds data is preprocessed into feature vectors, where the feature vectors are comprised of the average Shannon energy of the heart sound signal, the delta Shannon energy, and the delta-delta Shannon energy. The performance of the segmentation system is validated using eight-fold cross-validation

Published in:

Computers in Cardiology, 2005

Date of Conference:

25-28 Sept. 2005