By Topic

A multi-thread processor architecture based on the continuation model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
T. Matsuzaki ; Graduate Sch. of Inf. Sci. & Electr. Eng., Kyushu Univ., Fukuoka, Japan ; S. Amamiya ; M. Izumi ; M. Amamiya

We are developing the Fuce processor based on the dataflow computing model. Fuce means fusion of communication and execution. In order to execute many threads with multiple thread execution units efficiently, the Fuce processor executes multiple threads using the exclusive multi-thread execution model. The core concept of the exclusive multi-thread execution model is continuation based multi-thread execution, which is derived from dataflow computing. The Fuce processor aims to fuse the intra-processor execution and inter-processor communication. The Fuce processor unifies processing inside the processor and communication with processors outside as events, and executes the event as a thread. In this paper, we introduce the architecture of the Fuce processor and evaluate the concurrency performance of a Fuce processor which we described in VHDL. As a result, we understood that the processor has concurrency capability when there is sufficient thread level parallelism.

Published in:

Innovative Architecture for Future Generation High-Performance Processors and Systems (IWIA'05)

Date of Conference:

17 Jan. 2005