By Topic

Performance evaluation of evolutionary multiobjective approaches to the design of fuzzy rule-based ensemble classifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ishibuchi, H. ; Dept. of Comput. Sci. & Intelligent Syst., Osaka Prefecture Univ., Japan ; Nojima, Yusuke

Evolutionary multiobjective fuzzy rule selection can find a large number of non-dominated fuzzy rule-based classifiers with different tradeoffs between complexity and accuracy. Very simple fuzzy rule-based classifiers with high interpretability are usually not accurate while complicated classifiers with high accuracy are not interpretable. In this paper, fuzzy rule-based classifiers with different tradeoffs are used as an ensemble classifier. Three multiobjective formulations of fuzzy rule selection are compared with each other in terms of the generalization ability of constructed ensemble classifiers. Those ensemble classifiers are also compared with individual fuzzy rule-based classifiers obtained from the corresponding three single-objective formulations based on weighted sums of accuracy and complexity measures.

Published in:

Hybrid Intelligent Systems, 2005. HIS '05. Fifth International Conference on

Date of Conference:

6-9 Nov. 2005