Cart (Loading....) | Create Account
Close category search window
 

A novel SAL-PINSCH quantum-well laser structure for a pinched beam divergence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chen, Y.K. ; AT&T Bell Lab., Murray Hill, NJ ; Wu, M.C. ; Hong, M.H. ; Mannaerts, J.
more authors

Summary form only given. An edge-emitting strained AlGaAs/InGaAs/GaAs quantum-well laser structure is reported. It has a periodic index separate confinement heterostructure (PINSCH) optical confinement layers for a small beam divergence and high output power. Preliminary measurements of AR/HR-coated self-aligned ridge waveguide lasers show a CW output power of up to 350 mW and a 20° transverse beam divergence at a 980-nm lasing wavelength. This low beam divergence results in a high coupling efficiency of 51% into single-mode fibers. The expanded optical field in PINSCH confinement layers significantly pinches the transverse beam divergence and increases the maximum output power

Published in:

Electron Devices, IEEE Transactions on  (Volume:38 ,  Issue: 12 )

Date of Publication:

Dec 1991

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.