By Topic

Hierarchical Optimization of Asynchronous Circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bill Lin, Gjalt de Jong, Tilman Kolks ; IMEC, Leuven, Belgium

Many asynchronous designs are naturally specified and implemented hierarchically as an interconnection of separate asynchronous modules that operate concurrently and communicate with each other. This paper is concerned with the problem of synthesizing such hierarchically defined systems. When the individual components are synthesized and implemented separately, it is desirable to take into account the degrees of freedom that arise from the interactions with the other components and from the specification. Specifically, we consider how one can find the set of implementations that can be "correctly substituted" for a component in the system while preserving the behavior of the total system. The notion of correct substitution is formally defined for a hierarchical network of possibly non-deterministic modules and a new solution framework based on trace theory is presented to compute and represent this complete set of correct substitutions. We show that the complete set can be captured by a single trace structure using the notion of a "maximal trace structure". We indicate how asynchronous synthesis methods may be applied to explore the solution space e.g. to generate a delay-insensitive implementation.

Published in:

Design Automation, 1995. DAC '95. 32nd Conference on

Date of Conference:

1995