By Topic

Closed-form expressions of approximate error rates for optimum combining with multiple interferers in a Rayleigh fading channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. S. Kwak ; Dept. of Electr. & Comput. Eng., Univ. of Texas, Austin, TX, USA ; Jae Hong Lee

This paper presents approximate error rates of M-ary phase shift keying (MPSK) for optimum combining (OC) with multiple cochannel interferers in a flat Rayleigh fading channel. For the first-order approximation, we derive the closed-form expression for ordered mean eigenvalues of the interference-plus-noise covariance matrix, which facilitates performance evaluation for the OC with arbitrary numbers of interferers and antenna elements without Monte Carlo simulation and multiple numerical integrals. We also derive the closed-form expressions for approximate error rates of MPSK for the OC in terms of the average error rate of MPSK for maximal ratio combining (MRC). From the simple evaluation of ordered mean eigenvalues, we show that the first-order approximation gives a simple and accurate way to analyze the performance of the OC.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:55 ,  Issue: 1 )