By Topic

Time-of-arrival based localization under NLOS conditions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yiu-Tong Chan ; Dept. of Electron. Eng., City Univ. of Hong Kong, China ; Wing-Yue Tsui ; Hing-Cheung So ; Pak-Chung Ching

Three or more base stations (BS) making time-of-arrival measurements of a signal from a mobile station (MS) can locate the MS. However, when some of the measurements are from non-line-of-sight (NLOS) paths, the location errors can be very large. This paper proposes a residual test (RT) that can simultaneously determine the number of line-of-sight (LOS) BS and identify them. Then, localization can proceed with only those LOS BS. The RT works on the principle that when all measurements are LOS, the normalized residuals have a central Chi-Square distribution, versus a noncentral distribution when there is NLOS. The residuals are the squared differences between the estimates and the true position. Normalization by their variances gives a unity variance to the resultant random variables. In simulation studies, for the chosen geometry and NLOS and measurement noise errors, the RT can determine the correct number of LOS-BS over 90% of the time. For four or more BS, where there are at least three LOS-BS, the estimator has variances that are near the Cramer--Rao lower bound.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:55 ,  Issue: 1 )