Cart (Loading....) | Create Account
Close category search window

I/Q mismatch compensation using adaptive decorrelation in a low-IF receiver in 90-nm CMOS process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Elahi, I. ; Texas Instrum. Inc., Dallas, TX, USA ; Muhammad, K. ; Balsara, P.T.

We present a single multiplier based adaptive I/Q mismatch compensation circuit for narrowband quadrature receivers. Adaptive decorrelation between I and Q channel data is used for correcting gain and phase mismatches. Adaptation step size is computed from L1-norm inverse power measurement and a gear-shifting mechanism is used that allows fast initial convergence and slow adaptation on actual burst data. Image rejection ratio in excess of 50 dB is reported for GSM receiver after compensation allowing the receiver to use IF frequencies higher than half of the channel bandwidth. The presented mismatch compensation circuit is implemented as part of a single-chip GSM wireless transceiver fabricated in a 90-nm digital CMOS process. The presented techniques are, however, equally applicable to other narrowband packet-based applications.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:41 ,  Issue: 2 )

Date of Publication:

Feb. 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.