By Topic

A novel approach for unit commitment problem via an effective hybrid particle swarm optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ting, T.O. ; Dept. of Electr. Eng., Hong Kong Polytech. Univ., China ; Rao, M.V.C. ; Loo, C.K.

This paper presents a new approach via hybrid particle swarm optimization (HPSO) scheme to solve the unit commitment (UC) problem. HPSO proposed in this paper is a blend of binary particle swarm optimization (BPSO) and real coded particle swarm optimization (RCPSO). The UC problem is handled by BPSO, while RCPSO solves the economic load dispatch problem. Both algorithms are run simultaneously, adjusting their solutions in search of a better solution. Problem formulation of the UC takes into consideration the minimum up and down time constraints, start-up cost, and spinning reserve and is defined as the minimization of the total objective function while satisfying all the associated constraints. Problem formulation, representation, and the simulation results for a ten generator-scheduling problem are presented. Results clearly show that HPSO is very competent in solving the UC problem in comparison to other existing methods.

Published in:

Power Systems, IEEE Transactions on  (Volume:21 ,  Issue: 1 )