By Topic

Short-term load forecasting based on an adaptive hybrid method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Fan ; Osaka Sangyo Univ., Japan ; L. Chen

This paper aims to develop a load forecasting method for short-term load forecasting, based on an adaptive two-stage hybrid network with self-organized map (SOM) and support vector machine (SVM). In the first stage, a SOM network is applied to cluster the input data set into several subsets in an unsupervised manner. Then, groups of 24 SVMs for the next day's load profile are used to fit the training data of each subset in the second stage in a supervised way. The proposed structure is robust with different data types and can deal well with the nonstationarity of load series. In particular, our method has the ability to adapt to different models automatically for the regular days and anomalous days at the same time. With the trained network, we can straightforwardly predict the next-day hourly electricity load. To confirm the effectiveness, the proposed model has been trained and tested on the data of the historical energy load from New York Independent System Operator.

Published in:

IEEE Transactions on Power Systems  (Volume:21 ,  Issue: 1 )