By Topic

A genetic algorithm-based procedure to optimize system topology against parallel flows

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Granelli, G. ; Dept. of Electr. Eng., Univ. of Pavia, Italy ; Montagna, M. ; Zanellini, F. ; Bresesti, P.
more authors

Parallel (or loop) flows consist in the undesired circulation of power flows through certain interconnection corridors. Remedial actions available to transmission system operators or system planners include installation and operation of phase-shifting transformers and of dc transmission systems. Moreover, the invaluable experience of transmission system operators has shown that the network can be operated so as to reduce parallel flows also by properly selecting the topology of the system. In the present paper, a genetic algorithm-based procedure is designed for the topological optimization of the network against parallel flows. The control variables considered are the status of substation breakers and the location (and angle) of phase-shifting transformers. The problem is formulated as a multiobjective optimization. The main objective is that of reducing the power transfer distribution factor of an assigned transaction with reference to a set of lines; N and N-1 security levels are accounted for by means of subsidiary objective functions. The procedure is tested on a small CIGRE sample system and on a 4500-bus network representative of the European electric system (UCTE).

Published in:

Power Systems, IEEE Transactions on  (Volume:21 ,  Issue: 1 )