By Topic

An overview of the competitive and adversarial approaches to designing dynamic power management strategies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Irani, S. ; Sch. of Inf. & Comput. Sci., Univ. of California, Irvine, CA, USA ; Singh, G. ; Shukla, S.K. ; Gupta, R.K.

Dynamic power management (DPM) refers to the problem of judicious application of various low-power techniques based on runtime conditions in an embedded system to minimize the total energy consumption. To be effective, often such decisions take into account the operating conditions and the system-level design goals. DPM has been a subject of intense research in the past decade driven by the need for low power consumption in modern embedded devices. We present a comprehensive overview of two closely related approaches to designing DPM strategies, namely, competitive analysis approach and model checking approach based on adversarial modeling. Although many other approaches exist for solving the system-level DPM problem, these two approaches are closely related and are based on a common theme. This commonality is in the fact that the underlying model is that of a competition between the system and an adversary. The environment that puts service demands on devices is viewed as an adversary, or to be in competition with the system to make it burn more energy, and the DPM strategy is employed by the system to counter that.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:13 ,  Issue: 12 )