By Topic

Wire retiming as fixpoint computation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chuan Lin ; Electr. & Comput. Eng., Northwestern Univ., Evanston, IL, USA ; Hai Zhou

In system-on-chips (SOCs), a nonnegligible part of operation time is spent on global wires with long delays. Retiming-that is moving flip-flops in a circuit without changing its functionality-can be explored to pipeline long interconnect wires in SOC designs. The problem of retiming over a netlist of macro-blocks, where the internal structures may not be changed and flip-flops may not be inserted on some wire segments is called the wire retiming problem. In this paper, we formulate the constraints of the wire retiming problem as a fixpoint computation and use an iterative algorithm to solve it. Experimental results show that this approach is multiple orders more efficient than the previous one.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:13 ,  Issue: 12 )