Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Automated passive filter synthesis using a novel tree representation and genetic programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shoou-Jinn Chang ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Yan-Kuin Su

This paper proposes a novel tree representation which is suitable for the analysis of RLC (i.e., resistor, inductor, and capacitor) circuits. Genetic programming (GP) based on the tree representation is applied to passive filter synthesis problems. The GP is optimized and then incorporated into an algorithm which can automatically find parsimonious solutions without predetermining the number of the required circuit components. The experimental results show the proposed method is efficient in three aspects. First, the GP-evolved circuits are more parsimonious than those resulting from traditional design methods in many cases. Second, the proposed method is faster than previous work and can effectively generate parsimonious filters of very high order where conventional methods fail. Third, when the component values are restricted to a set of preferred values, the GP method can generate compliant solutions by means of novel circuit topology.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:10 ,  Issue: 1 )