By Topic

An organizational coevolutionary algorithm for classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Licheng Jiao ; Inst. of Intelligent Inf. Process., Xidian Univ., Xi''an, China ; Jing Liu ; Weicai Zhong

Taking inspiration from the interacting process among organizations in human societies, a new classification algorithm, organizational coevolutionary algorithm for classification (OCEC), is proposed with the intrinsic properties of classification in mind. The main difference between OCEC and the available classification approaches based on evolutionary algorithms (EAs) is its use of a bottom-up search mechanism. OCEC causes the evolution of sets of examples, and at the end of the evolutionary process, extracts rules from these sets. These sets of examples form organizations. Because organizations are different from the individuals in traditional EAs, three evolutionary operators and a selection mechanism are devised for realizing the evolutionary operations performed on organizations. This method can avoid generating meaningless rules during the evolutionary process. An evolutionary method is also devised for determining the significance of each attribute, on the basis of which, the fitness function for organizations is defined. In experiments, the effectiveness of OCEC is first evaluated by multiplexer problems. Then, OCEC is compared with several well-known classification algorithms on 12 benchmarks from the UCI repository datasets and multiplexer problems. Moreover, OCEC is applied to a practical case, radar target recognition problems. All results show that OCEC achieves a higher predictive accuracy and a lower computational cost. Finally, the scalability of OCEC is studied on synthetic datasets. The number of training examples increases from 100 000 to 10 million, and the number of attributes increases from 9 to 400. The results show that OCEC obtains a good scalability.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:10 ,  Issue: 1 )