By Topic

High-level buffering for hiding periodic output cost in scientific simulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaosong Ma ; Dept. of Comput. Sci., North Carolina State Univ., Raleigh, NC, USA ; Lee, J. ; Winslett, M.

Scientific applications often need to write out large arrays and associated metadata periodically for visualization or restart purposes. In this paper, we present active buffering, a high-level transparent buffering scheme for collective I/O, in which processors actively organize their idle memory into a hierarchy of buffers for periodic output data. It utilizes idle memory on the processors, yet makes no assumption regarding runtime memory availability. Active buffering can perform background I/O while the computation is going on, is extensible to remote I/O for more efficient data migration, and can be implemented in a portable style in today's parallel I/O libraries. It can also mask performance problems of scientific data formats used by many scientists. Performance experiments with both synthetic benchmarks and real simulation codes on multiple platforms show that active buffering can greatly reduce the visible I/O cost from the application's point of view.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:17 ,  Issue: 3 )