By Topic

Distributed Kalman Filter with Embedded Consensus Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
R. Olfati-Saber ; Dartmouth College, Thayer School of Engineering, Hanover, NH 03755.

The problem of distributed Kalman filtering (DKF) for sensor networks is one of the most fundamental distributed estimation problems for scalable sensor fusion. This paper addresses the DKF problem by reducing it to two separate dynamic consensus problems in terms of weighted measurements and inverse-covariance matrices. These to data fusion problems are solved is a distributed way using low-pass and band-pass consensus filters. Consensus filters are distributed algorithms that allow calculation of average-consensus of time-varying signals. The stability properties of consensus filters is discussed in a companion CDC ’05 paper [24]. We show that a central Kalman filter for sensor networks can be decomposed into n micro-Kalman filters with inputs that are provided by two types of consensus filters. This network of micro-Kalman filters collectively are capable to provide an estimate of the state of the process (under observation) that is identical to the estimate obtained by a central Kalman filter given that all nodes agree on two central sums. Later, we demonstrate that our consensus filters can approximate these sums and that gives an approximate distributed Kalman filtering algorithm. A detailed account of the computational and communication architecture of the algorithm is provided. Simulation results are presented for a sensor network with 200 nodes and more than 1000 links.

Published in:

Proceedings of the 44th IEEE Conference on Decision and Control

Date of Conference:

12-15 Dec. 2005