By Topic

Consensus Filters for Sensor Networks and Distributed Sensor Fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Olfati-Saber, R. ; Thayer School of Engineering, Dartmouth College, olfati@dartmouth.edu ; Shamma, J.S.

Consensus algorithms for networked dynamic systems provide scalable algorithms for sensor fusion in sensor networks. This paper introduces a distributed filter that allows the nodes of a sensor network to track the average of n sensor measurements using an average consensus based distributed filter called consensus filter. This consensus filter plays a crucial role in solving a data fusion problem that allows implementation of a scheme for distributed Kalman filtering in sensor networks. The analysis of the convergence, noise propagation reduction, and ability to track fast signals are provided for consensus filters. As a byproduct, a novel critical phenomenon is found that relates the size of a sensor network to its tracking and sensor fusion capabilities. We characterize this performance limitation as a tracking uncertainty principle. This answers a fundamental question regarding how large a sensor network must be for effective sensor fusion. Moreover, regular networks emerge as efficient topologies for distributed fusion of noisy information. Though, arbitrary overlay networks can be used. Simulation results are provided that demonstrate the effectiveness of consensus filters for distributed sensor fusion.

Published in:

Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC '05. 44th IEEE Conference on

Date of Conference:

12-15 Dec. 2005