By Topic

An nD-systems approach to global polynomial optimization with an application to H2model order reduction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bleylevens, I. ; Mathematics Department, Universiteit Maastricht, PO Box 616, 6200 MD Maastricht, The Netherlands i.bleylevens@math.unimaas.nl ; Peeters, R. ; Hanzon, B.

The problem of finding the global minimum of a multivariate polynomial can be approached by the matrix method of Stetter-Möller, which reformulates it as a large eigenvalue problem. The linear operators involved in this approach are studied using the theory of nD-systems. This supports the efficient application of iterative methods for solving eigenvalue problems such as Arnoldi methods and Jacobi-Davidson methods. This approach is demonstrated by an example which addresses optimal H2-model reduction of a linear dynamical model of order 10 to order 9.

Published in:

Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC '05. 44th IEEE Conference on

Date of Conference:

12-15 Dec. 2005