By Topic

Distributed Geodesic Control Laws for Flocking of Nonholonomic Agents

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Moshtagh, N. ; PhD student at Electrical and Systems Engineering Department, University of Pennsylvania, Philadelphia, PA, USA ; Jadbabaie, A. ; Daniilidis, K.

We study the problem of flocking and coordination of a group of kinematic nonholonomic agents in 2 and 3 dimensions. By analyzing the velocity vectors of agents on a circle (for planar motion) or sphere (for 3D motion), we develop geodesic control laws that minimize a misalignment potential based on graph Laplacians resulting in velocity alignment. The proposed control laws are distributed and will provably result in flocking when the underlying proximity graph which represents the neighborhood relation among agents is connected. Furthermore, we develop a vision based control law that does not rely on heading measurements, but only requires measurement of bearing, optical flow and time-to-collision, all of which can be efficiently measured.

Published in:

Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC '05. 44th IEEE Conference on

Date of Conference:

12-15 Dec. 2005