By Topic

A Case Study in Scheduling Reentrant Manufacturing Lines: Optimal and Simulation-Based Approaches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. A. Ramirez-Hernandez ; Department of Electrical & Computer Engineering & Computer Science, University of Cincinnati, OH 45221, USA. Email: ; E. Fernandez

This paper presents initial results of a research study in the optimal scheduling (i.e., job sequencing) in Reentrant Manufacturing Lines (RML), motivated by applications in semiconductor manufacturing. In particular, a simple benchmark RML is utilized, and the optimal scheduling policy is analyzed for an infinite horizon discounted cost problem formulation. The optimality equation and condition are derived, and optimal policy results are obtained for general non-negative one-stage cost functions (in the buffer size). Computational experiments are also performed using the Modified Policy Iteration algorithm. Preliminary experiments on the application of a Neuro-Dynamic Programming (NDP) method (i.e., Q-learning) to approximate the optimal scheduling policy are then presented, when linear and quadratic one-stage cost functions are considered. These experiments show that the Q-learning algorithm gradually approximates the optimal policy as the number of iterations increases and longer simulation lengths are utilized. However, the computational load required by the algorithm increases exponentially with the number of states. Results from this study represent an initial and exploratory research in the application of NDP methods to large-scale RML systems. More extensive research in both exact optimal results and efficient NDP schemes is in progress.

Published in:

Proceedings of the 44th IEEE Conference on Decision and Control

Date of Conference:

12-15 Dec. 2005