By Topic

Robust Model Reference Adaptive Control of Parabolic and Hyperbolic Systems with Spatially-varying Parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Y. Kim ; Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green St., Urbana, II. 61801, USA. ; J. Bentsman

A long-standing problem of the start-up instability in the model-reference adaptive control of distributed parameter systems caused by setting the initial controller parameter values sufficiently far from the ideal ones, unknown a priori, is solved for a class of systems. The latter include systems modeled by parabolic and hyperbolic partial differential equations (PDEs) with spatially varying parameters. The stabilizing direct model reference adaptive control (MRAC) laws are synthesized using Lyapunov redesign. The controller uses plant state and for hyperbolic case, additionally, its time derivative. The key feature of the approach proposed is the elimination from the control laws of the plant state spatial derivatives that could give rise to the closed loop system ill-posedness. The approach also prevents closed-loop system instability by keeping the gains for plant state and, in the hyperbolic case - state and its time derivative, negative under arbitrary initial controller parameter setting.

Published in:

Proceedings of the 44th IEEE Conference on Decision and Control

Date of Conference:

12-15 Dec. 2005