By Topic

Maximum Entropy Models, Dynamic Games, and Robust Output Feedback Control for Automata

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Baras, J.S. ; Institute for Systems Research and the Department of Electrical & Computer Engineering, University of Maryland, College Park, MD 20742, USA. ; Rabi, M.

In this paper, we develop a framework for designing controllers for automata which are robust with respect to uncertainties. A deterministic model for uncertainties is introduced, leading to a dynamic game formulation of the robust control problem. This problem is solved using an appropriate information state. We derive a Hidden Markov Model as the maximum entropy stochastic model for the automaton. A risk-sensitive stochastic control problem is formulated and solved for this Hidden Markov Model. The two problems are related using small noise limits.

Published in:

Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC '05. 44th IEEE Conference on

Date of Conference:

12-15 Dec. 2005