Cart (Loading....) | Create Account
Close category search window
 

Analysis of the Lactose metabolism in E. coli using sum-of-squares decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ahmadzadeh, A. ; GRASP laboratory, University of Pennsylvania, Philadelphia, PA 19104. ; Halasz, A. ; Kumar, V. ; Prajna, S.
more authors

We provide a system-theoretic analysis of the mathematical model of lactose induction in E.coli which predicts the level of lactose induction into the cell for specified values of external lactose. Depending on the levels of external lactose and other parameters, the Lac operon is known to have a low steady state in which it is said to be turned off and high steady state where it is said to be turned on. Furthermore, the model has been shown experimentally to exhibit a bi-stable behavior. Using ideas from Lyapunov stability theory and sum-of-squares decomposition, we characterize the reachable state space for different sets of initial conditions, calculating estimates of the regions of attraction of the biologically relevant equilibria of this system. The changes in the basins of attraction with changes in model parameters can be used to provide biological insight. Specifically, we explain the crucial role played by a small basal transcription rate in the Lac operon. We show that if the basal rate is below a threshold, the region of attraction of the low steady state grows significantly, indicating that system is trapped in the (off) mode, showing the importance of the basal rate of transcription.

Published in:

Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC '05. 44th IEEE Conference on

Date of Conference:

12-15 Dec. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.