By Topic

An LQG Optimal Linear Controller for Control Systems with Packet Losses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
B. Sinopoli ; Department of Electrical Engineering, UC Berkeley, Berkeley, CA, USA. ; L. Schenato ; M. Franceschetti ; K. Poolla
more authors

Motivated by control applications over lossy packet networks, this paper considers the Linear Quadratic Gaussian (LQG) optimal control problem in the discrete time setting and when packet losses may occur between the sensors and the estimation-control unit and between the latter and the actuation points. Previous work [1] shows that, for protocols where packets are acknowledged at the receiver (e.g. TCP- like protocols), the separation principle holds. Moreover, in this case the optimal LQG control is a linear function of the estimated state and there exist critical probabilities for the successful delivery of both observation and control packets, below which the optimal controller fails to stabilize the system. The existence of such critical values is determined by providing analytic upper and lower bounds on the cost functional, and stochastically characterizing their convergence properties in the infinite horizon. Finally, it turns out that when there is no feedback on whether a control packet has been delivered or not (e.g. UDP-like protocols), the LQG optimal controller is in general nonlinear, as shown in [2]. There exists a special case, i.e. the observation matrix C is invertible and there is no output noise. In this case this paper shows that the optimal control is linear and critical values for arrival probabilities exist and can be computed analytically.

Published in:

Proceedings of the 44th IEEE Conference on Decision and Control

Date of Conference:

12-15 Dec. 2005