By Topic

Double-gate SOI devices for low-power and high-performance applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Roy, K. ; Dept. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Mahmoodi, H. ; Mukhopadhyay, S. ; Ananthan, H.
more authors

Double-gate (DG) transistors have emerged as promising devices for nano-scale circuits due to their better scalability compared to bulk CMOS. Among the various types of DG devices, quasi-planar SOI FinFETs are easier to manufacture compared to planar double-gate devices. DG devices with independent gates (separate contacts to back and front gates) have recently been developed. DG devices with symmetric and asymmetric gates have also been demonstrated. Such device options have direct implications at the circuit level. Independent control of front and back gate in DG devices can be effectively used to improve performance and reduce power in sub-50nm circuits. Independent gate control can be used to merge parallel transistors in non-critical paths. This results in reduction in the effective switching capacitance and hence power dissipation. We show a variety of circuits in logic and memory that can benefit from independent gate operation of DG devices. As examples, we show the benefit of independent gate operation in circuits such as dynamic logic circuits, Schmitt triggers, sense amplifiers, and SRAM cells. In addition to independent gate option, we also investigate the usefulness of asymmetric devices and the impact of width quantization and process variations on circuit design.

Published in:

VLSI Design, 2006. Held jointly with 5th International Conference on Embedded Systems and Design., 19th International Conference on

Date of Conference:

3-7 Jan. 2006