By Topic

Analyzing software quality with limited fault-proneness defect data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Seliya, N. ; Comput. & Inf. Sci., Michigan Univ., Dearborn, MI, USA ; Khoshgoftaar, T.M. ; Shi Zhong

Assuring whether the desired software quality and reliability is met for a project is as important as delivering it within scheduled budget and time. This is especially vital for high-assurance software systems where software failures can have severe consequences. To achieve the desired software quality, practitioners utilize software quality models to identify high-risk program modules: e.g., software quality classification models are built using training data consisting of software measurements and fault-proneness data from previous development experiences similar to the project currently under-development. However, various practical issues can limit availability of fault-proneness data for all modules in the training data, leading to the data consisting of many modules with no fault-proneness data, i.e., unlabeled data. To address this problem, we propose a novel semi-supervised clustering scheme for software quality analysis with limited fault-proneness data. It is a constraint-based semi-supervised clustering scheme based on the k-means algorithm. The proposed approach is investigated with software measurement data of two NASA software projects, JM1 and KC2. Empirical results validate the promise of our semi-supervised clustering technique for software quality modeling and analysis in the presence of limited defect data. Additionally, the approach provides some valuable insight into the characteristics of certain program modules that remain unlabeled subsequent to our semi-supervised clustering analysis.

Published in:

High-Assurance Systems Engineering, 2005. HASE 2005. Ninth IEEE International Symposium on

Date of Conference:

12-14 Oct. 2005