By Topic

A new lossy substrate de-embedding method for sub-100 nm RF CMOS noise extraction and modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jyh-Chyurn Guo ; Dept. of Electron. Eng., Nat. Chiao-Tung Univ., Hsinchu, Taiwan ; Yi-Min Lin

A new equivalent circuit method is proposed in this paper to de-embed the lossy substrate and lossy pads' parasitics from the measured RF noise of multifinger MOSFETs with aggressive gate length scaling down to 80 nm. A new RLC network model is subsequently developed to simulate the lossy substrate and lossy pad effect. Good agreement has been realized between the measurement and simulation in terms of S-parameters and four noise parameters, NFmin (minimum noise figure), Rn (noise resistance), Re(Ysopt), and Im(Ysopt) for the sub-100-nm RF nMOS devices. The intrinsic NFmin extracted by the new de-embedding method reveal that NFmin at 10 GHz can be suppressed to below 0.8 dB for the 80-nm nMOS attributed to the advancement of fT to 100-GHz level and the effectively reduced gate resistance by multifinger structure.

Published in:

IEEE Transactions on Electron Devices  (Volume:53 ,  Issue: 2 )