Cart (Loading....) | Create Account
Close category search window

Conventional and wavelet coherence applied to sensory-evoked electrical brain activity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Klein, A. ; Inst. of Math., Giessen, Germany ; Sauer, T. ; Jedynak, A. ; Skrandies, W.

The use of coherence is a well-established standard approach for the analysis of biomedical signals. Being entirely based on frequency analysis, i.e., on spectral properties of the signal, it is not possible to obtain any information about the temporal structure of coherence which is useful in the study of brain dynamics, for example. Extending the concept of coherence as a measure of linear dependence between realizations of a random process to the wavelet transform, this paper introduces a new approach to coherence analysis which allows to monitor time-dependent changes in the coherence between electroencephalographic (EEG) channels. Specifically, we analyzed multichannel EEG data of 26 subjects obtained in an experiment on associative learning, and compare the results of Fourier coherence and wavelet coherence, showing that wavelet coherence detects features that were inaccessible by application of Fourier coherence.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:53 ,  Issue: 2 )

Date of Publication:

Feb. 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.