By Topic

Suppressing the surface field during transcranial magnetic stimulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Davey, K.R. ; Center for Electromech., Univ. of Texas, Austin, USA ; Riehl, M.

Transcranial magnetic stimulation (TMS) is used commonly as both a diagnostic tool and as an alternative to electric shock therapy for the treatment of clinical depression. Among the clinical issues encountered in its use is the mitigation of accompanying pain. The objective becomes one of minimizing the induced surface field while still achieving the target field objective. Three techniques discussed for realizing this end are 1) placing a conducting shield over a portion of the central target region, 2) using supplementary coils of opposite polarity in tandem with the primary field, and 3) opening the core angle to distribute the field. Option (3) shows the greatest promise for reducing the ratio of the maximum surface field to the induced target field.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:53 ,  Issue: 2 )