Cart (Loading....) | Create Account
Close category search window
 

Quantizers with uniform decoders and channel-optimized encoders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Farber, B. ; Fair Isaac Co., San Diego, CA, USA ; Zeger, K.

Scalar quantizers with uniform decoders and channel-optimized encoders are studied for a uniform source on [0,1] and binary symmetric channels. Two families of affine index assignments are considered: the complemented natural code (CNC), introduced here, and the natural binary code (NBC). It is shown that the NBC never induces empty cells in the quantizer encoder, whereas the CNC can. Nevertheless, we show that the asymptotic distributions of quantizer encoder cells for the NBC and the CNC are equal and are uniform over a proper subset of the source's support region. Empty cells act as a form of implicit channel coding. An effective channel code rate associated with a quantizer designed for a noisy channel is defined and computed for the codes studied. By explicitly showing that the mean-squared error (MSE) of the CNC can be strictly smaller than that of the NBC, we also demonstrate that the NBC is suboptimal for a large range of transmission rates and bit error probabilities. This contrasts with the known optimality of the NBC when either both the encoder and decoder are not channel optimized, or when only the decoder is channel optimized.

Published in:

Information Theory, IEEE Transactions on  (Volume:52 ,  Issue: 2 )

Date of Publication:

Feb. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.