By Topic

Design and analysis of nonbinary LDPC codes for arbitrary discrete-memoryless channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bennatan, A. ; Sch. of Electr. Eng., Tel-Aviv Univ., Israel ; Burshtein, D.

We present an analysis under the iterative decoding of coset low-density parity-check (LDPC) codes over GF(q), designed for use over arbitrary discrete-memoryless channels (particularly nonbinary and asymmetric channels). We use a random- coset analysis to produce an effect that is similar to output symmetry with binary channels. We show that the random selection of the nonzero elements of the GF(q) parity-check matrix induces a permutation-invariance property on the densities of the decoder messages, which simplifies their analysis and approximation. We generalize several properties, including symmetry and stability from the analysis of binary LDPC codes. We show that under a Gaussian approximation, the entire q-1-dimensional distribution of the vector messages is described by a single scalar parameter (like the distributions of binary LDPC messages). We apply this property to develop extrinsic information transfer (EXIT) charts for our codes. We use appropriately designed signal constellations to obtain substantial shaping gains. Simulation results indicate that our codes outperform multilevel codes at short block lengths. We also present simulation results for the additive white Gaussian noise (AWGN) channel, including results within 0.56 dB of the unrestricted Shannon limit (i.e., not restricted to any signal constellation) at a spectral efficiency of 6 bits/s/Hz.

Published in:

Information Theory, IEEE Transactions on  (Volume:52 ,  Issue: 2 )