By Topic

Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
E. J. Candes ; Dept. of Appl. & Comput. Math., California Inst. of Technol., Pasadena, CA, USA ; J. Romberg ; T. Tao

This paper considers the model problem of reconstructing an object from incomplete frequency samples. Consider a discrete-time signal f∈CN and a randomly chosen set of frequencies Ω. Is it possible to reconstruct f from the partial knowledge of its Fourier coefficients on the set Ω? A typical result of this paper is as follows. Suppose that f is a superposition of |T| spikes f(t)=στ∈Tf(τ)δ(t-τ) obeying |T|≤CM·(log N)-1 · |Ω| for some constant CM>0. We do not know the locations of the spikes nor their amplitudes. Then with probability at least 1-O(N-M), f can be reconstructed exactly as the solution to the ℓ1 minimization problem. In short, exact recovery may be obtained by solving a convex optimization problem. We give numerical values for CM which depend on the desired probability of success. Our result may be interpreted as a novel kind of nonlinear sampling theorem. In effect, it says that any signal made out of |T| spikes may be recovered by convex programming from almost every set of frequencies of size O(|T|·logN). Moreover, this is nearly optimal in the sense that any method succeeding with probability 1-O(N-M) would in general require a number of frequency samples at least proportional to |T|·logN. The methodology extends to a variety of other situations and higher dimensions. For example, we show how one can reconstruct a piecewise constant (one- or two-dimensional) object from incomplete frequency samples - provided that the number of jumps (discontinuities) obeys the condition above - by minimizing other convex functionals such as the total variation of f.

Published in:

IEEE Transactions on Information Theory  (Volume:52 ,  Issue: 2 )