Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

The fading number of single-input multiple-output fading channels with memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lapidoth, A. ; Dept. of Inf. Technol. & Electr. Eng., Swiss Fed. Inst. of Technol., Zurich, Switzerland ; Moser, S.M.

We derive the fading number of stationary and ergodic (not necessarily Gaussian) single-input multiple-output (SIMO) fading channels with memory. This is the second term, after the double-logarithmic term, of the high signal-to-noise ratio (SNR) expansion of channel capacity. The transmitter and receiver are assumed to be cognizant of the probability law governing the fading but not of its realization. It is demonstrated that the fading number is achieved by independent and identically distributed (i.i.d.) circularly symmetric inputs of squared magnitude whose logarithm is uniformly distributed over an SNR-dependent interval. The upper limit of the interval is the logarithm of the allowed transmit power, and the lower limit tends to infinity sublogarithmically in the SNR. The converse relies inter alia on a new observation regarding input distributions that escape to infinity. Lower and upper bounds on the fading number for Gaussian fading are also presented. These are related to the mean squared-errors of the one-step predictor and the one-gap interpolator of the fading process respectively. The bounds are computed explicitly for stationary mth-order autoregressive AR(m) Gaussian fading processes.

Published in:

Information Theory, IEEE Transactions on  (Volume:52 ,  Issue: 2 )