By Topic

Derivation of a closed-form approximate expression for the self-capacitance of a printed circuit board trace

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

The electric fields that couple traces on printed circuit boards to attached cables can generate common-mode currents that result in significant radiated emissions. Previous work has shown that these radiated emissions can be estimated based on the self-capacitances of the microstrip structures on a board . In general, the determination of these self-capacitances must be done numerically using three-dimensional static modeling software. In this paper, an approximate closed-form expression for the self-capacitance of microstrip traces is derived. This expression can be used to estimate the voltage-driven common-mode emissions from boards with various microstrip trace geometries. The expression also provides insight relative to the microstrip parameters that have the greatest effect on radiated emissions.

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:47 ,  Issue: 4 )