Cart (Loading....) | Create Account
Close category search window
 

An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Donelli, M. ; Dept. of Inf. & Commun. Technol., Univ. of Trento, Italy ; Franceschini, G. ; Martini, A. ; Massa, A.

The application of a multiscale strategy integrated with a stochastic technique to the solution of nonlinear inverse scattering problems is presented. The approach allows the explicit and effective handling of many difficulties associated with such problems ranging from ill-conditioning to nonlinearity and false solutions drawback. The choice of a finite dimensional representation for the unknowns, due to the upper bound to the essential dimension of the data, is iteratively accomplished by means of an adaptive multiresolution model, which offers a considerable flexibility for the use of the information on the scattering domain acquired during the iterative steps of the multiscaling process. Even though a suitable representation of the unknowns could limit the local minima problem, the multiresolution strategy is integrated with a customized stochastic optimizer based on the behavior of a particle swarm, which prevents the solution from being trapped into false solutions without a large increasing of the overall computational burden. Selected examples concerned with a two-dimensional microwave imaging problem are presented for illustrating the key features of the integrated stochastic multiscaling strategy.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:44 ,  Issue: 2 )

Date of Publication:

Feb. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.