By Topic

Huge magnetoresistance and low junction resistance in magnetic tunnel junctions with crystalline MgO barrier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
K. Tsunekawa ; Canon ANELVA Corp., Tokyo, Japan ; D. D. Djayaprawira ; S. Yuasa ; M. Nagai
more authors

Inserting a 4 Å-Mg metal layer between the amorphous CoFeB bottom electrode layer and the MgO barrier layer was found to be effective in realizing huge magnetoresistance effect in low-resistance CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs). As a result, magnetoresistance (MR) ratio as high as 138% at resistance-area product (RA) of about 2.4 Ω·μm2 was obtained. This value is about seven times that of state-of-the-art MTJs for magnetic sensor application. X-ray diffraction analysis clarified that crystal orientation of the poly-crystalline MgO(001) barrier layer was improved by the Mg layer. It is suggested that the higher crystalline orientation of the MgO(001) barrier layer could have enhanced the coherent tunneling of Δ1 electrons, resulting in an increase of MR ratio at the low RA (thin MgO thickness) region. The annealing temperature and free layer materials have also been optimized to satisfy the requirements for practical read head application. Although this optimization resulted in a reduction in the MR ratio to about 45%-53%, this value is still more than twice the highest MR ratio of conventional MTJs. The currently developed fabrication process will accelerate the development of highly sensitive read heads for ultrahigh-density hard-disk drives.

Published in:

IEEE Transactions on Magnetics  (Volume:42 ,  Issue: 2 )