Cart (Loading....) | Create Account
Close category search window
 

Exponential synchronization of a class of neural networks with time-varying delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chao-Jung Cheng ; Dept. of Inf. Eng., Kun Shan Univ., Tainan, Taiwan ; Teh-Lu Liao ; Jun-Juh Yan ; Hwang, Chi-Chuan

This paper aims to present a synchronization scheme for a class of delayed neural networks, which covers the Hopfield neural networks and cellular neural networks with time-varying delays. A feedback control gain matrix is derived to achieve the exponential synchronization of the drive-response structure of neural networks by using the Lyapunov stability theory, and its exponential synchronization condition can be verified if a certain Hamiltonian matrix with no eigenvalues on the imaginary axis. This condition can avoid solving an algebraic Riccati equation. Both the cellular neural networks and Hopfield neural networks with time-varying delays are given as examples for illustration.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:36 ,  Issue: 1 )

Date of Publication:

Feb. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.