By Topic

A study of evolutionary multiagent models based on symbiosis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Eguchi, T. ; Graduate Sch. of Inf., Waseda Univ., Fukuoka, Japan ; Hirasawa, K. ; Jinglu Hu ; Ota, N.

Multiagent Systems with Symbiotic Learning and Evolution (Masbiole) has been proposed and studied, which is a new methodology of Multiagent Systems (MAS) based on symbiosis in the ecosystem. Masbiole employs a method of symbiotic learning and evolution where agents can learn or evolve according to their symbiotic relations toward others, i.e., considering the benefits/losses of both itself and an opponent. As a result, Masbiole can escape from Nash Equilibria and obtain better performances than conventional MAS where agents consider only their own benefits. This paper focuses on the evolutionary model of Masbiole, and its characteristics are examined especially with an emphasis on the behaviors of agents obtained by symbiotic evolution. In the simulations, two ideas suitable for the effective analysis of such behaviors are introduced; "Match Type Tile-world (MTT)" and "Genetic Network Programming (GNP)". MTT is a virtual model where tile-world is improved so that agents can behave considering their symbiotic relations. GNP is a newly developed evolutionary computation which has the directed graph type gene structure and enables to analyze the decision making mechanism of agents easily. Simulation results show that Masbiole can obtain various kinds of behaviors and better performances than conventional MAS in MTT by evolution.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:36 ,  Issue: 1 )